Balanced Mix Design Oklahoma Perspective

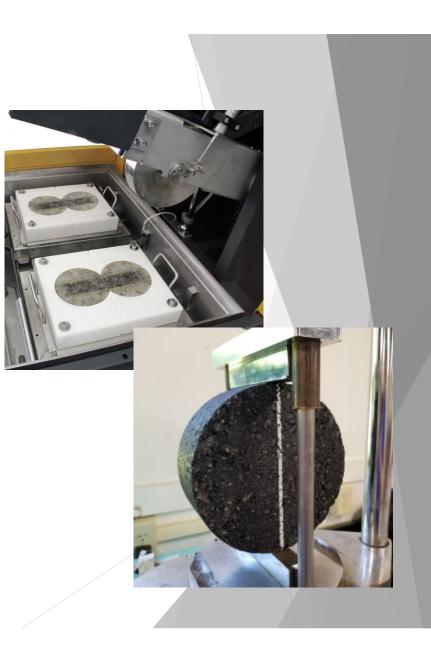
67th Annual KU Asphalt Paving Conference

December 7, 2023

Oklahoma BMD Objectives

Reduce the cracking potential of asphalt mixes

Extend the life of pavements


Sustainable and cost-effective mixes

Simplify the mix design process

Allow innovation and the use of new technologies

Performance Tests

- Hamburg Wheel Tracking Test (HWTT)
 - ODOT currently uses it for rutting potential evaluation of all new mixes
 - Required for mix design acceptance
 - Will obtain new equipment and explore SIP for moisture susceptibility evaluation
 - Current max rut depth of 12.5mm at 10k, 15k, or 20k passes
- Ideal Cracking Test (Ideal-CT)
 - ODOT current cracking test for initial implementation phases
 - Gathering testing data and evaluating reliability and variability between ODOT and Producers
 - Previous Criteria CT-Index = 80 All mixes
 - Current Criteria CT-Index = 100 Surface / 60 Intermediate

Implementation Plan Overview

Phase 1 BMD evaluation

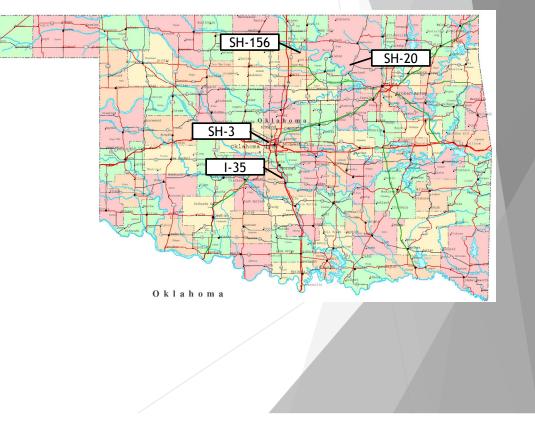
- Literature Review and Equipment
 - Test Selection
- Shadow Projects 2018

Phase 2 Proof of Concept

- Develop Initial Special Provision
- Identify Challenges
- Pilot Projects 2022

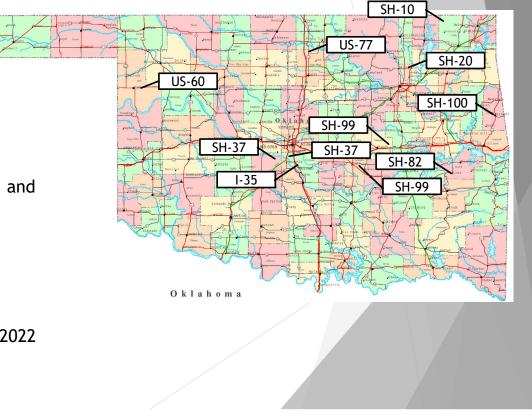
Phase 3 Long-Term Eval.

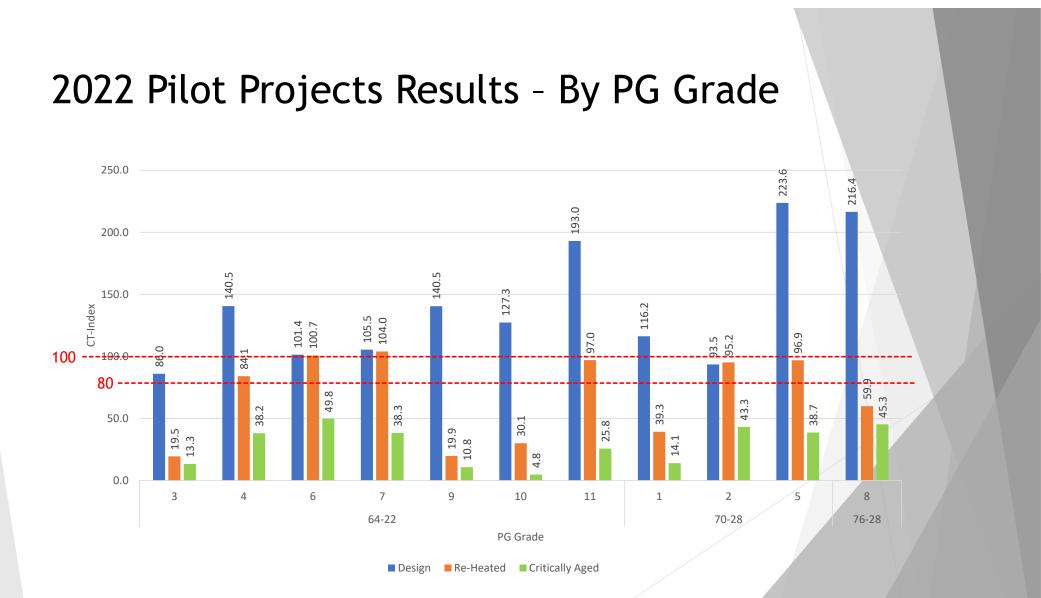
- Benchmarking and Field Study
- Evaluate Aging Protocols
 - Pilot Projects 2023


Phase 4 Implementation

- BMD Partnership

- Evaluate Field QC/QA
 - Implementation Projects - 2024

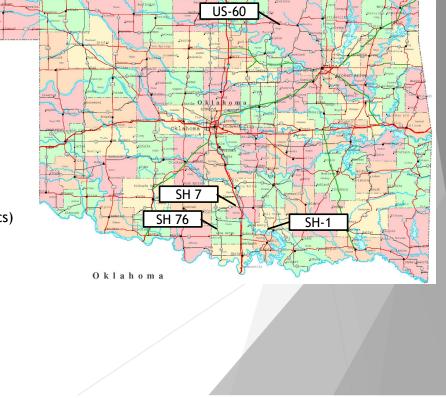

Phase 1 - Understanding BMD


- Familiarize with the concept
- Evaluated I-Fit and Ideal-CT tests
- Assess tests variability
- 2018 Shadow Projects
 - 4 Projects were selected
 - Different Distresses and Traffic Conditions
 - ▶ 1 SP control and 1 or more BMD mixes
 - Gather cracking test data of BMD and SP mixes
 - No Volumetric Changes to Spec
 - RAP allowed on the surface (up to 15%)

Phase 2 - Proof of Concept

- 11 Projects across the state
 - 19.0 and 12.5 mm NMAS mixes
 - HMA and WMA mixes
 - No Superpave control mixes
- Expected Outcomes
 - Use the new Special Provision
 - Identify challenges during design, production, and construction
 - Difference between design and production
 - Validate short and long-term aging protocols
 - Assess RAP binder blending
 - All 11 projects and testing completed by Dec 2022

Phase 2 Pilot Projects - Lessons Learned


Lessons Learned

- High variability between labs
 - Round Robin to be performed to address variability
- Design and production CT-Index discrepancies
- Some producers have consistent design and production values
- Expected decrease between Re-Heated and Critically Aged
- Understanding PG grading from extraction
- Overall, no issues during the construction
- Changes to Special Provision
 - Short Term Aging from 2 to 4 hours during design
 - Max RAP content from 40% to 30% with a softer binder for intermediate and base mixes
 - Determine RAP AC content by extraction only
 - Change the pay factor formula to accommodate the new target range

Phase 3 - Variability and Long-Term Evaluation

- Designed considering PMS limitations
 - Control and BMD in the same direction
- Assess tests variability during production (testing every 1,000 tons) to determine field testing frequency
- 2023 Pilot Projects
 - 4 Projects were selected
 - Different Existing Conditions (severe cracking, underlying fabrics)
 - ▶ 1 SP control and 1 BMD mix
 - Evaluate RAP management practices and variability
 - Use of updated special provision, new criteria, and aging protocol
 - ▶ RAP allowed on the surface (up to 25%) with a softer binder

Phase 3 - Benchmarking and Field Verification

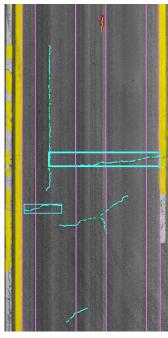
- Production Benchmarking Task Order
 - Up to 50 Mixes to be sampled
 - Ideal-CT testing and HWTT (full BMD profile)
- Design Benchmarking In-House
 - 2 additional Hamburg specimens for ALL MIXES for approval
 - Ideal CT during design additional to the current HWTT testing
- Field Verification Task Order
 - Use 3D-Scan to survey the current conditions of 2018 projects
 - Assess: cracking, rutting, ride, comparison with conventional
 - Scan 2022 and 2023 pilot projects

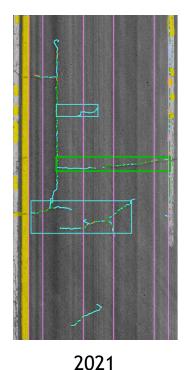
Phase 3 and 4 - Team Effort

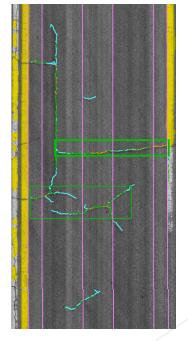
- BMD Task Force ODOT-Industry
 - ODOT Industry (OAPA)
 - Ongoing since 2018
 - Discuss industry concerns
 - ▶ Hear industry input, ideas
 - Technical exchange
 - ▶ Discuss challenges, lessons learned,
 - Open forum for discussion

- BMD ODOT-Consultant Partnership
 - ODOT Consultant

- Centralized coordination and workforce support
- ► Fine-tune BMD special provision
- Set goals for 2024 implementation projects
- Assist with research management (Local universities and NCAT test track)
- Training to residencies, producers, designers
- Assist with additional testing, round robins


Phase 4 - 2024 Implementation Projects


- Use of Special Provisions developed by the Partnership and Task Force
- Project selection based on determined criteria
- Will include a training component (workshops) for residencies and field personnel
- Considering long-term monitoring
- Include a Superpave control mix for performance comparison
- 1 Project per district (at least 8 projects)
- 1 Load frame per residency
 - Determine QC/QA procedures and frequency
- Evaluate the adoption of Approach D (Performance Design)



Phase 4 - Long-Term Monitoring

ODOT Pavement Management System Yearly Conditions Survey

2022

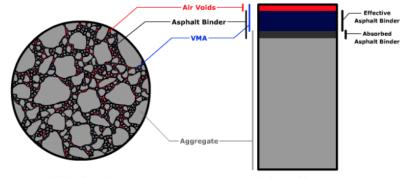
2020

Future of BMD

- Initial implementation for the design phase
 - Expected end of 2024
 - Benchmarking and field verification projects completed
 - > Determine final criteria for cracking test
 - Assess the potential use of Approach D
- Initial implementation for QC/QA use of BMD tests
 - Expected outcome of partnership by 2025
 - Determine field tests for cracking and rutting tests
 - Determine criteria and testing frequency
- Environmental impacts and new technology
 - FHWA Climate Challenge, LCA framework
 - ▶ WMA technology with BMD (ongoing), Additives, Rubber

Thank you

Questions? ?


- Larry Patrick
- lpatrick@okhotmix.com
- 405-524-7675

Background

Superpave - Current Asphalt Mix Design

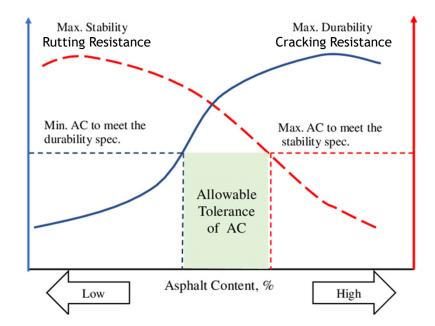
- Developed from 1987 to 1993
- Original vision of Superpave included Level 1 based on volumetrics and materials properties, and Levels 2 and 3 based on performance but never implemented
- Performance tests at the time were not practical and expensive
- The focus was rutting resistance
- Primary form of distress now is cracking

HMA Close-Up

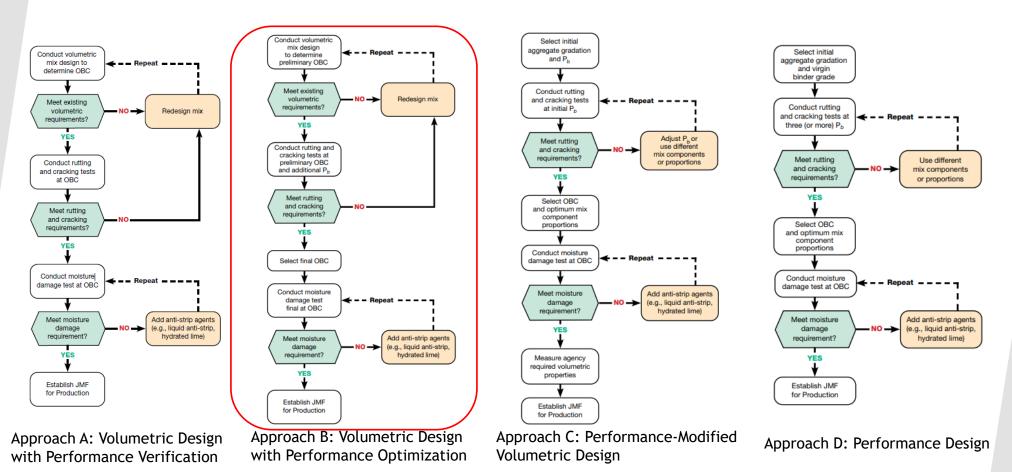
Volume Diagram

Rutting

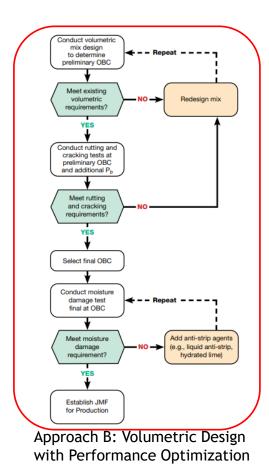
Cracking

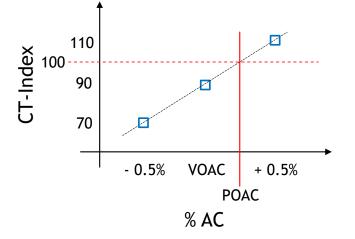

Balanced Mix Design (BMD) Concept

BMD Definition (FHWA - 2015)


Asphalt mix design using performance tests on appropriately conditioned specimens that address multiple modes of distress taking into consideration mix aging, traffic, climate, and location within the pavement structure.

BMD Goal

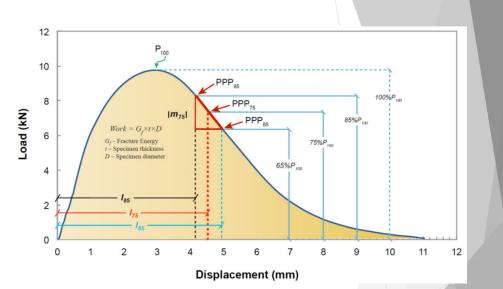

Balance rutting and cracking potential for optimum performance

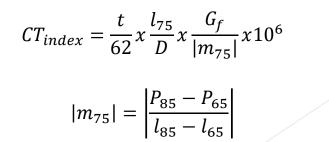


BMD Approaches

BMD Approaches

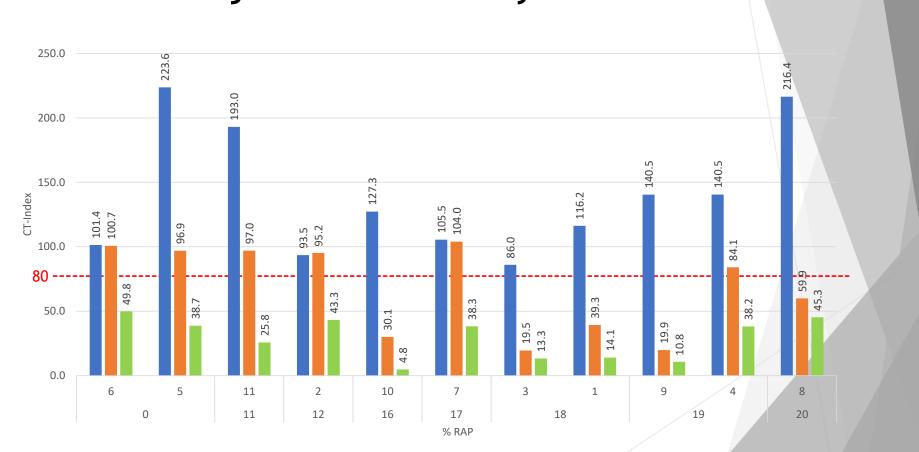
Phase 3 - 2023 Pilot Projects


Expected outcomes


- Confirm cracking test criteria
- Field testing experience
- Performance comparison with conventional Superpave
- Confirm STA protocol of 4 hours
- Close the gap between design and field testing
- Determine final Spec for implementation
- Long-term performance monitoring plan

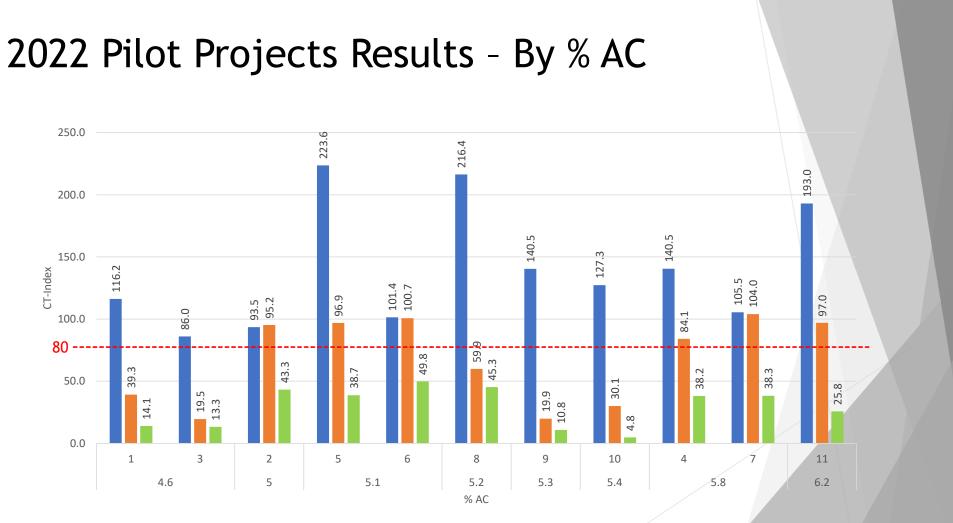
Phase 1 - Test Selection

- Ideal-CT
- Developed by Fujie Zhou, et al at TTI
- Benefits
 - ▶ Cost Effective, Simple, Practical, Efficient
 - Good Repeatability, Sensitivity, and Field Correlation
- ASTM D8225-19
- Indirect Tensile Strength
 - Min 3 replicates
 - > 150mm diameter x 62 mm height specimen
 - Target air voids 7.0 ± 0.5%
 - ▶ 50 ± 2.0 mm/min load rate
 - 25°C Testing Temperature
 - 2 hours ± 10 minutes conditioning
 - Measure Load and Displacement


Phase 2 - Proof of Concept

First BMD Special Provision

- Evaluate the feasibility of BMD with Ideal-CT
- RAP up to 40% for intermediate and base mixes with softer binder
- ▶ RAP up to 20% for surface mixes with softer binder
- Allow the use of rejuvenators and WMA
- Flexible volumetric requirements
 - Lab Molds N_{des} 96.0 to 97.0 % of Gmm
 - ▶ Field Density 92.0 to 98.0 % Gmm for 1.0 Pay Factor
- 11 Pilot projects in 2022



2022 Pilot Projects Results - By % RAP

2022 Pilot Projects Results - HWTT