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Used in all buildings




Used in all buildings
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Diversity in details




Always at steel/concrete interface
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Part 1 - Exposed Base Plate Connections
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Static/Non-Seismic Loading
* Analysis of Design Guide One approach
N— 7
7 ™
Seismic Loading
« Strong vs Weak Base Design
« Ductile base plate details
N— 7
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Seismic considerations — exposed base plates

ANSI/AISC 341-16
An American National Standard

Steel Design Guide

Seismic Provisions
for Structural Steel Buildings

Base Plate and
Anchor Rod Design

July 12, 2016

Supersedes the Seismic Provisions for Structural Steel Buildings
dated June 22, 2010, and all previous versions

Approved by the AISC Committee on Specifications

Broad principles

and philosophy Design and

detailing



Seismic considerations — exposed base plates

ANSIAISC 341-16
An American National Standard

Seisn

6¢c. Required Flexural Strength
for Structural S 4 &

Where column bases are designed as moment connections to the foundation, the
required flexural strength of column bases that are designated as part of the SFRS,
Supersedes the Seismic Proy including their attachment to the foundation, shall be the summation of the required

— connection strengths of the steel elements that are connected to the column base as

Approved by the
follows:

(a) For diagonal braces, the required flexural strength shall be at least equal to the
required flexural strength of diagonal brace connections.

(b) For columns, the required flexural strength shall be at least equal to the lesser of
the following:

(1) 1L.1RyFyZ]/o of the column; or

B ro O d p rl n C I p | eS (2) The moment calculated using the overstrength seismic load, provided that

a ductile limit state in either the column base or the foundation controls the

and philosophy design.




Two ways to design seismic base connections

S TrO N g b ase 6¢c.  Required Flexural Strength

d esig n Whe‘re column bases are designed as moment connec'tions to the foundation, the

required flexural strength of column bases that are designated as part of the SFRS,
including their attachment to the foundation, shall be the summation of the required
connection strengths of the steel elements that are connected to the column base as
follows:

(a) For diagonal braces, the required flexural strength shall be at least equal to the
required flexural strength of diagonal brace connections.

(b) For columns, the required flexural strength shall be at least equal to the lesser of
the following:

(1) 1L.1RyFyZ]/o of the column; or

(2) The moment calculated using the overstrength seismic load, provided that
a ductile limit state in either the column base or the foundation controls the

design.



Strong base design

« Direct application of
Design Guide One

« Large rods, thick
plate




Two ways to design seismic base connections

6¢c.  Required Flexural Strength

Where column bases are designed as moment connections to the foundation, the

WeO |< bCIS@ required flexural strength of column bases that are designated as part of the SFRS,
including their attachment to the foundation, shall be the summation of the required

d eS I g n USI n g QO connection strengths of the steel elements that are connected to the column base as

follows:

IO O d S (a) For diagonal braces, the required flexural strength shall be at least equal to the
required flexural strength of diagonal brace connections.

(b) For columns, the required flexural strength shall be at least equal to the lesser of
the following:

(1) 1L.1RyFyZ]/o of the column; or

(2) The moment calculated using the overstrength seismic load, provided that
a ductile limit state in either the column base or the foundation controls the

design.




Weak base design
« Weak base design
« Cheaper connection
« Requires ductility
« Limited specific

guidance on how
to achieve this




Inherent ductility of exposed base
connections

Great inherent ductility (rotation >5%)

1,500

1,000 -

Moment (kip-in)

Drift (%)

Gomez et al. (2010), Kanvinde et al. (2015), Trautner et al. (2017),
Astaneh et al. (1992), Fahmy et al. (1999), Burda & Itani (1999), Lee et al. (2008) and Wald et
al. (2020)

O



How to achieve weak base design?

« Develop understanding of base rotation
demands

« Engineer details that can meet these
demands, with confidence

« Demonstrate effectiveness of these
details



How to achieve weak base design?
Develop understanding of base rotation

W 24x62 Y
30.51 =
R warsr e || gravity loads N _
— 8 ) bilinear hysteretic
3| w257 wsedo8ll X .
= =
warss wanaod | truss elements springs at RBS locations
g —
------ | . . g S
=| “r - ~<
. . . - . N
é [~ / 5 ]l | W 30108 ”,/ \\\———”/ ‘-—”/ ~o II
/ concrete foundation W 33141 = N 1
4-story frame g 1
/ 5| | wasaar|| / &/) &/) \
— ; )
Steel Moment Frames W 2484 W 33141 ._J(O \ I/ q}l_.' .-[((“ \ ‘\
[ v 4 i T = \
3 il , B BS
‘ 316.1m ‘ § W 2484 W 33141 /) /) \
. e \ g g ‘
Plan view fpzros S W 33141
(all frames) 2 7 PR ol
2 Lwarea |35 3 Lwssaan || s L[|~
E = e N
waves . waonef] st @) / @) \
3| 2 \ o . 3
3 Lw 2ax8a 3 wsoae| |3 3| | w 33169 ‘((\\ /r)\); ' i ‘((\\ ! /
3| B = ! /
B waras wanusf] ¢ w2z BS T BS i
g ki 1Y © \ © ’ ,’
3 |w2reos 3 Lwaone||3 ! w 33169 g N Z .
3| B = S~ _ -7 \
Ol w2704 W 30:132 W 33x169 T \
g 3 g o : P-Delta columns || [+
& w3016 3 |Lwsoasz| |3 / w 33169 \
2| B f \
0 w 30116 wasazszfll W 33469 ( = =
5| 5 Bs—
3| L w 304108 |3 3| waoaza||2f 3| w 3saee i g/\ g/\
3 3 = A two springs < = =
Lt 1ty b in series & \%
‘concrete foundation . concrete foundation concrete foundation |

8-story frame 12-story frame 20-story frame



How to achieve weak base design?

Rotation in the range of 4-5% when designed
for Qg loads provides great performance
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How to achieve weak base design?

Weak-base design is well within reach
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Engineering such a connection

Which ductile mode 1o use?




Ductile base connections through rod

elongation
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Concrete
Footing

Soules et al (2016)

Good performance
observed under
high shaking

Attributed fo strefch
length



Ductile base connections through rod
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Achieving ductility in base connections

Consensus around rod elongation vs base plate
yielding




Achieving ductility in base connections

Consensus around rod elongation vs base plate
yielding




Stretch length requires additional fabrication

Stretch
Length

I

b

ateel

/" Column

Anchor
Chair

Grout Pad

Concrete
Footing



A new “reliably ductile” detail - AISC/Pankow

Project

Consultation with design
engineers, fabricators

Focus on convenience of
fabrication

Minimal changes to
existing practice

High confidence in ductile
response



The Upset Thread Detail




The Upset Thread Detail

Milled down “upset”
threads
« Enhance
ductility
« Define yielding
zone



The Upset Thread Detail

Milled down “upset”
threads
« Enhance
ductility
« Define yielding
zone
Debonding tape
« Preventsrod
catching
« Similar fo BRB




The Upset Thread Detail

EXXEXR

Milled down “upset”
threads
« Enhance
ductility
« Define yielding
zone
Debonding tape
* Preventsrod
catching
« Similar to BRB
Shear Key
* Protects rods from
shear
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Schematic of detail

Column

Upset Thread (UT)
Anchor Rod

Concrete
Foundation

Polyethylene

Debonding
Tape \

EISEETEZEETER



Large scale tests and performance
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Large scale tests and performance
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Large scale tests and performance

Base

Anchor | Anchor | Axial Load

Plate | Grade | Dia [in] [kip]

size [in]

0.75 120 (C)
55
30 x 30 x 120 (C)
2 1.00 120 (C)
105
0
o 1 ATC-SAC
% D:u,; aaaaa MAAAAM'LMAMMMﬁIﬁMle hhhhh uuuﬁﬁhhﬁﬁﬁ“ﬂﬁliﬁﬁ] PrOfOCOI qpplled
5 o 'RAA AR """VV”V\'WJ”'\WWJMIHU vvvvvvvvvvvvv“’vwvvvuyww .
E I L twice followed
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] 5 10 15 20 25 in D 5 0 15 20 25 30




Results

All specimens survived back to back applications of SAC protocol
(to 5%) and additional cycles to 6.5% with no rod fracture



Results

Base Momenl (kip.in)

se Moment (kip.in)

Base Moment (kip.in)

m)

Buase Moment (kip.1

Predominant
damage -
grout crushing




Generalization using material testing, FEM, and
line-based simulations

Elastic Beam

/ Column

Simulation of Necking, Ultra Low Cycle Fatigue, Bending



Generalization using material testing, FEM, and
line-based simulations

Elastic Beam

/ Column

No Damage

~60 parametric simulations with variations in plate and rod
dimensions, rod materials, loading histories etc.



Parametric Simulation - findings

. Behavior appears to hold across a large number of
configurations
. ' plate length is key

L

>1/2 XL

L <1/2 XL

stretch plate stretch plate




NLTHA Results and summary

panel zone

hysteretic springs

:
AL
panel zone
model

elastic beam/colymn
elements

\ bilinear hysteretic

bilinear hysteretic

/ springs at RBS locations / truss elements

@

(

P-Delta columns
springs at column

exposed column base
ends

plate connection model

o/

'l

Use validated method to examine failure




NLTHA Results and summary

bilinear hysteretic

/ springs at RBS locations / truss elements
= &6 )3 /
© &)

panel zone

hysteretic springs

o 116 & * 6 ; /
1 \ bilinear hysteretic P-Delta columns

panel zone .
del springs at column exposed column base
mode! d )
ends plate connection model

© elastic beam/colymn o) ® / ®

elements A

T s R o S

Use validated method to examine failure

« Upset Thread detail with L eicn > 1/2 X Excellent

Lotate | | performance
« O, based design of connection
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Part 2 - Embedded Base Connections
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Part 2 - Embedded Base Connections

Embedded

Bases

Prevailing
understanding
and design
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.

a4 )

New SR AR S o e
Developments
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| Developing column capacity is
Photo credit: Josh Buckholt and .
Mahmoud Maamouri, CSD Ch(]llenglng

FnAainear<




Part 2 - Embedded Base Connections

Embedded
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Resistance through
concrete bearing



Part 2 - Embedded Base Connections

PhOTO- credit;: Nabih ReSISTOnce Through
Youssef, Simpson Gumpertz

and Heger concrete bearing



Overview

Embedded

Bases

Prevailing
understanding
and design
methods

.

New
Developments

Steel Design Guide

Base Plate and
Anchor Rod Design

Second Edition

ANSVAISC 341-16
An American National Standard

Seismic Provisions
for Structural Steel Buildings

J

Supersedes the Seismic Provisions for Structural S ildings
dated June 22,2010, and all pre ersions

Approved by the AISC Commitice on

SEISMIC

DESIGN

MANUAL

AMERICAN INSTITLUTI
i
STEEL CONSTRUCTION
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Takeaways from Design Documents

« SSDM uses coupling
beam analogy

CONCRETE

GRADE BM. / REBAR

/'{' S . \

BASE PL. O D S GROUT
/ \~ANCHORROD

CONCRETE

FOUNDATION

Figure 2.7. Embedded moment base detail.



Takeaways from Design Documents

« AISC 341 and Design

GUide One idenTify ’/—Wallfac:e
embedded details Ao 2009ty | | Sl ady
At least d/2 - N
« AISC 341 — Commentary [
points to similar details .
A 2 0.03Loby /Fsr |5 A = 0.03fLobr [Fysr

« SSDM uses coupling N ""/—“:
beam analogy |



Takeaways from Design Documents

« AISC 341 and Design
Guide One identify
embedded detaqils

-~ Ay > 0.03fLoby [Fysr

— Wall face

o AISC 341 — Commentary
points to similar details -

> 0.03fLoby /Fysr —
At least d,

A

— A 2 0.030Laby Fysr

ﬁ*ﬂ |

| s

Area of the bars, A /_

=0.03fLeby [Fysr—| |
<

Awp



Research in the last 15 years

* 10 Experiments

 Finite element
simulations

« Strength and
stiffness models




Various variables investigated

« Embedment depth

« AXial compression

4444

« Column size mE - ]

1 RS s
* Reinforcement T |
S~ ———

Stirrups Zones Vertical
M or Tests #4 & 5 R dirrups

Jor Tests #4 and §
U-Bar Hairpin 7 each side of the column
#4 bars (2 branches) (See Stirrups Detail)

* 2rows /
vertfical T
— ~— #4 Stirmp bars
branche:




Coupling beam approach applied to test data

2
| B8 Generic Detail (No Reinforcement)
1.8 A w/ Horizontal Reinforcement (No Stirrups)
16k @ w/ Horizontal Reinforcement (w/ Stirrups)
14} @ 8
- 12+
g o o
S Lo S -
3 o
[
S 08 2
06
041
02F .
(a) AISC SDM Method
O 1 1 L
0 0.5 1 1.5 2
embed / 1"-ja::c:.‘
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Embedded base connections are NOT coupl



Embedded base connections are NOT coupling beams

 Additional
confinement around
column flanges

« Fixity and strength due
to vertical bearing




Embedded base connections are NOT coupling beams

« Effect of axial force

 Additional
confinement around
column flanges

« Fixity and strength due
to vertical bearing




Embedded base connections are NOT coupling beams

« Effect of axial force

 Additional
confinement around
column flanges

« Fixity and strength due
to vertical bearing




New model for embedded base connections

« Horizontal bearing against
column flanges

« Vertical bearing against
embedded plate

« Consideration of
iInferactions and failure
modes




Horizontal Bearing and panel shear - similar to
coupling beams

Bearing A




Vertical bearing




Strength Model - considering both
mechanisms

=

ﬂﬁ%\

z

il

* |ldealization of stress blocks

 Consideration of failure
modes in each direction

« Consideration of
reinforcement patterns



Strength Model
Consideration of failure modes in each direction




Improved models for embedded bases

2
1.8 B  Generic Detail (No Reinforcement)
A w/ Horizontal Reinforcement (No Stirrups)
16 @ w/ Horizontal Reinforcement (w/ Stirrups)
14
812 m 2
s A
s 'r~-~"~"="=-=---- Q- e m - - - l- -
S iy
S 08+
0.6
04+
0.2+
(b) Proposed Model
0 1 1 L
0 0.5 1 1.5 2
smbed/dcof




Rotational stiffness of embedded bases
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Rotational stiffness of embedded bases

3000
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Rotational stiffness of embedded bases

3000

2000

1000 -

M,,., (kN.m)

O/ 0.01 0.02 0.03 0.04

Significant rotation! Onase (radians)



Summary - embedded base connections

« Knowledge almost entirely new

« Existing methods do not fully capture
complexity and mechanisms

« New test data has led to improved methods

« Rotational flexibility is an issue
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Part 3
A look to

the future

A look to the future

“Resolved”
issues
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« Minor modifications to strength model
» Ductile details for weak base design
» Reliability analysis
« Biaxial bending
« Anchorages

7~

Ongoing work

Unresolved
issues

~\

« Shear transfer
« Alternate anchor rod patterns
* Modeling tools

« Effect of slab overtopping

\_




Ductile details for weak base design
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Reliability analysis
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Biaxial bending and alternate rod patterns




Shear transfer
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Models for base flexibility — exposed and
embedded
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Kanvinde, A.M., Grilli, D.A., and Zareian, F. (2012). “Rotational Stiffness of Exposed Column Base Connections —
Experiments and Analytical Models,” Journal of Structural Engineering, ASCE, 138(5), 549-560.



Blockout connections and overtopping slab




Blockout connections and overtopping slab




Blockout connections and overtopping slab

Work done at BYU (Paul Richards) and UC Davis



Potential proposals and code changes

A look to
the future

« New (39) Edifion of
Design Guide One
(~2023) — In progress

R .+ AISC 341 — Next code
’ cycle
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Ongoing work
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AISC Design Guide One 3 Ed

Amit Kanvinde, Mahmoud Maamouri, Josh Buckholt

New chapter on embedded connections
Detailed consideration of seismic issues

Configurations not addressed currently (rod
patterns, biaxial bending)

Stiffness models

Guidelines for computer analysis



AISC Design Guide One 3 Ed

Amit Kanvinde, Mahmoud Maamouri, Josh Buckholt

Web Tools!
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« Embedded base connections with

« Overall foundation response and

~

reinforcement
* Braced frame base plates

soil stfructure interaction
e Base frame interactions
« Resilience, design for repair
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Braced frame base plates
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Photo credit: Rick Drake (2003)



Overall foundation response
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Overall foundation response
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Overall foundation response
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Base frame interactions
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Inamasu, I., Kanvinde, A.M., and Lignos, D., (2019). “Seismic Stability of Wide-Flange Steel Columns Interacting with Embedded
Column Base Connections,” Journal of Structural Engineering, American Society of Civil Engineers, 145 (12), 04019151.



Still an exciting area with many opportunities

A look to . o
the future * Resilience and remaining
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CIVIL AND ENVIRONMENTAL
ENGINEERING

Thank you!

hitps://faculty.engineering.ucdavis.edu/kanvinde/
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